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1. Weighting (unifying framework)
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1. Weighting (unifying framework)
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A Unitying Framework for Flows and Diffusions
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Very personal comments

» ODE/SDE perspective * Loss/ prob. perspective
* Help understanding details * Help overall understanding
* (mainly) inspire sampling/ generation stage design * (mainly) inspire training stage design



1. Weighting (unifying framework)

* 2 endpoints:
* Data: x~q(x)
* Noise: e~N(0,I)

 Latent variable (noise perturbed data): z,, where t € [0,1]
 t = 0:data (x); t = 1: noise (€)

* Models:
* Forward model (0 2 1): q(zq,.. 1]|x)

* Reverse model/ generative model (Goal!) (120): p(zg .. 1)
* Goal: Dg; (q(zy) = q(x)||p(zo)) ~ (0 (good fit at data)
* IfA) Dy, (q(z1|0)|p(21)) = O,
« and B) sg(z; 1) = V, log q;(2)
* > Dk (q(zo,..1)| P(Zo,...,1)3 ~ 0 (good fit at all noise perturbed data)




1. Weighting (unifying framework)

* Interpolation/ forward process (extra details):

* Z; = a:x + o€ (stochastic version: a;x + o;€ + ag¢)
e Variance preserving (VP): af = 1 — o/
* Conditional OT (sub-VP):a; =1 —t,0, =t

* Any schedule can be scaled to VP

« Lets, = 1/\af + of D VP: (s;ap)* + (s;0,)* = 1> 542,
* Just do upscaling when passing to neural net §g (s¢2;, t).

2
* What matters: SNR = %, invariant to t-scaling
t

* Noise schedule (A(t)): log-SNR



1. Weighting (unifying framework)

* Interpolation/ forward process (extra details):
* Z; = a:x + o€ (stochastic version: a;x + o;€ + ag¢)
e VP after rescaling: aZ + o7 = 1

* Noise schedule: log- SNR (A(t))
* }{(t) = A= f)t(t) = log 2 (stochastic version: A" = log— at )

of +o'2

* Strictly monotonically decreasmg

 For t~U(0,1), p() = =% = —1/£{(t)

* Wecanusetand A mterchangeably
* Z; = aux + oy€,fore~N(0, 1)



1. Weighting (unifying framework)

* Objective function:
* Given x~q(x),

1
LW(x) — EEt~U(0,1),e~N(O,I) [W(At)”g\@ (Zt’/lt) N g’lt”ﬂ
* Here,

 Noise schedule (VP):z, = a,x + 0,6 = < /1 — th> X+ 0y,€

 Equivalently, 1 = loga?/a? ~p(1)
* g(+): parametrization
* w(/As): weighting

 Seems there are 3 components = Let’s check them one-by-one!



1. Weighting (unifying framework)

* Objective function: given x~q(x),

R 2
Ly, (x) = EEt~U(O,1),E~N(O,I) [W(At)HQG (z, A¢) — gxlt“z]
* Here,z; = a;x + 06 = ), x + 0),€

* (1) Noise schedule = weighting:

A is a strictly monotonically decreasing function of ¢
- time-warping

—> can be absorbed by weight w(1;)

Let’s re-define the objective as...

1 w(Ae) 2
Ly, (x) = EEt~U(O,1),e~N(O,I) () |Go (2, A¢) — gxltnz
dt

Then, new loss is invariantto p(1) = — -
But influence variance = importance sampling



1. Weighting (unifying framework)

* Objective function: given x~q(x),

dt . 2
- w0 ||Ge (26, Ae) — gﬁt“z]

1
Ly, (x) = EE t~U(0,1),e~N(0,)
* Here, z; = a;x + o€ = a) . x + 0),€

* (1) Noise schedule = weighting:
* Importance sampling: adaptive noise schedule
1 wd) ,
LW(X) — EE)L"'I?(/U,@VN(O,I) [p(/l) ”99 (ZA;}{) _ g/l”Z]

* Letp(A) « Ex [wD)IIgg(z2, 2) — gall5] = reduce variance

* In practice: piecewise-linear function for f;(t) EMAWD)|Go(z1, 1) — g2ll5
* Can use different noise schedule for training & sampling:

* Training: reduce variance

 Sampling: reduce curvature & discretization error for numerical integration




1. Weighting (unifying framework)

* Sampling:
* FMschedule:a; =1—-t,0, =t=2 2z, =2z; + (s —t)
* FM schedule is the “straightest” guy in this world? 2> wrong!
* FMis only straight for predicting a single point
* But.. We average over large distribution
* - straight to point (IS NOT EQUAL TO) straight to distribution

* “Straightest” guy (schedule) depends on environment (data)
* 2 general goals:
* Low integration error

* As straight as possible
 Should have some adaptive way (literature review later...)



VP schedule

FM schedule

1. Weighting (unifying framework
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1. Weighting (unifying framework)

* Objective function: given x~q(x),

dt
L,(x) = Et~U(01)e~N(OI) 71 W(/lt)”gH(Zt;/lt) g/lt”]

* Here, z; = a;x + o€ = ), x + 0y,€

* (2) parametrization =2 weighting:
* f = €(DDPM), V,q(z|x) (score matching), v (flow matching)

e — €gl|3 = e*||x — Xgl|5 (e-prediction and x-prediction error)
= 03|V, log q(zx|x) — se||3 (score prediction)
=a, 2(e7 +1)72|v — Vgl|? (v-prediction, general)
= (e + 1) v —vell3 (v-prediction with VP SDE)

= (€ /53 a + 1) ||F — Fol|3 (F-prediction)

(122)
(123)
(124)
(125)
(126)



1. Weighting (unifying framework)

* Objective function: given x~q(x),

dt
L,(x) = Et~U(O D.e~NOD |~ 77 W(/lt)”gQ (Ze, A) — g/lt” ]
* Here, z; = a;x + o€ = ), x + 0y,€

* (2) parametrization 2 weighting:

* Mattersin the original frameworks
e lowSNR:a l,0 T
e ishard to learn, X = (z; — 0:€)/a; error amplified
* HighSNR:o l,a T
* x;ishardtolearn, € = (z; — a;X) /o, error amplified
 Parametrize by vector field balance these 2.



1. Weighting (unifying framework)

* Objective function: given x~q(x),

1 dt
Ly (x) = EEt~U(O,1),e~N(O,I) a1 w(A)|€g(2e, Ar) — E”%]

* Here, z; = a;x + o€ = ), x + 0y,€

* (3) weighting

1.0

Heavy weight on low SNR %" o]

- DMis good at E 06

perceptual data (image/ = 0.4 1
=

sound)

FM is super aggressive

Non-monotonic weighting functions

— |DDPM
EDM
P2

—— min-SNR-y

~75 -50 -25 00 25 50
A (loa SNR)

7.5 10.0

w(A) (normalized)

Monotonic weighting functions

—— ELBO

—— y-prediction and FM-OT
—— EDM-monotonic (Ours)
—— sigmuoid(—A + 2) (Ours)

~75 -50 -25 00 2.5 50
A (loa SNR)

7.5 10.0




1. Weighting (unifying framework)

* Objective function: given x~q(x),

1 dt A 5
Ly (x) = EEt~U(O,1),e~N(O,I) a1 €9 (2¢, A¢) — €ll3

* Here, z; = a;x + o€ = ), x + 0y,€

* Heuristic strategies, depend on your goals:
* Minimize variance
Balance magnitude of gradients
Balance model capacity
Balance corruption rates across heterogenous data types



1. Weighting (unifying framework)

* Objective function: given x~q(x),

1 dt
Ly (x) = EEt~U(O,1),E~N(O,I) a1 w(A)|ég(ze, Ar) — E”%]

* Here, z; = a;x + o€ = ), x + 0y,€
* So, now everything reduces to w(A1)!
* |ICLR blog: https://d2jud02ci9yv69.cloudfront.net/2025-04-28-

diffusion-flow-173/blog/diffusion-flow/



https://d2jud02ci9yv69.cloudfront.net/2025-04-28-diffusion-flow-173/blog/diffusion-flow/
https://d2jud02ci9yv69.cloudfront.net/2025-04-28-diffusion-flow-173/blog/diffusion-flow/

1. Weighting (unifying framework)

* Objective function: given x~q(x),

1 dt A 5
Ly (x) = EEt~U(O,1),E~N(O,I) a1 €9 (2¢, A¢) — €ll3
* Here, z; = a;x + o€ = ay . x + 0y,€

* |deas:
» Learn distribution of stopping time = likelihood control = SNR control
(see section 2)

* Model has enough capacity: trade-off/ implementation settings
* FM: aggressive/ efficient enough = need to “slow down”

* Neuro:
* Animal perception - diffusion?
* Canwe learn the weighting?



2. Likelihood/ ELBO & Diffusion loss

e Still from the “Understanding” paper
* This is what Durk really good at, lol

e Define:
L(t;x):= Dgr(q(ze.. 1|x)||p(Z:... 1))

e Step 1: link KL to SNR:

d 1 d\ - -
ria N ) . _ 2
“,—J,LU-X_J — EIEEN_,-""G(U.I:] HE €g(Z: /"‘)Hz} Proof is very easy to follow,
- . / but the key step is in Kingma
a . L &
L,(x) = —/ 7 L(t;x)w(A;) dt stal,, 2021 @
0 ¢

1
d | o
L(x) :/ Wu'['_,f\;j L(t:x) dt + w(Apax) £(0; x) + constant
0o ¢



2. Likelihood/ ELBO & Diffusion loss

* If...

* w(4;) is monotonically increasing to t (decreasing for 1)
* w.l.o.g., assumew(1,) =1

L(x)=E, ) [L(t:x)] + constant

dw(4¢)
dt

e Step 2: link KL to ELBO

* ,wherep,,(t) = + SoW(Amax)



2. Likelihood/ ELBO & Diffusion loss

L(t;x) = Drcr(q(2e,....11%)||p(2t,...,1)) = —Eq(z, %) [ELBO: (2 )] — H(q(z:|x))

where the ELBO of noise-perturbed data is:

ELBOt(Zf) =

L,(x)

< log p(z;)

=, @) [£(t;x)] + constant

1V

~Ept).a(aix

7

ELBO of noise-perturbed data

— \I.Ep'”’ (t),q(z¢|x) [1Dg p(Zt)]

-

~
Log-likelihood of noise-perturbed data

Eqy(z, o) [log p(Zt, 2t) — log q(z¢|zt)]

) [ELBO¢(z¢)] + constant

-+ constant

S
constant

(33)

(34)
(35)

(37)
(38)

(39)



2. Likelihood/ ELBO & Diffusion loss

L(x) =E,, @ [L£(t;x)] + constant (37)
= _Epﬂ.(t)zq(mlx) [ELBOt(Zt)l + constant (38)
ELBO of 11{1i5:pc11u1'bcd data
* Note that:
* Whenw(t) =1-2>p, =,
¢ ZO =X

* So,whenw(t) =1...
L, (x) = —ELBO(x) + constant
* Now, we link likelihood to diffusion loss: lots of potentials!

* Likelihood/ ELBO is usually very hard to calculate
* Diffusion loss is very trivial



2. Likelihood/ ELBO & Diffusion loss (e.g.1)

* Example 1: Policy gradient = FM policy gradient

Flow Matching Policy Gradients

David McAllister'* Songwei Ge'* Brent Yi'* Chung Min Kim'
Ethan Weber'! Hongsuk Choi' Haiwen Feng!'? Angjoo Kanazawa'
1 UC Berkeley 2 Max Planck Institute for Intelligent Systems



2. Likelihood/ ELBO & Diffusion loss (e.g.1)

* {Obs., action, reward} = {o¢, a;, 1+}
* Quick recap of PG:

* Objective (use advantage to reduce var): 18X Eo,wr(afo,) [log 7o (ar | Gt)f’lt} )

e biased, unstable: likelihood = likelihood ratio to old

max Eat~n90ld(at|0t) [T(H) At]

mo(ay | ot)g
° r(f) = .
, Where r(0) roa(@n 1 00

* To further stability = clipping 2 PPO

11151,}( E(.memd (ae|oe) [111111 (?‘(Q)AP clip(r(#),1 — eclip 1 4 EC“P)At)]



2. Likelihood/ ELBO & Diffusion loss (e.g.1)

* Key problem: likelihood ratio

molas | o)

?Tuld(flt | Gt)'

r(0) =

e Likelihood: hard to evaluate...
* Replace log(m(a¢|o;)) by E,.(r)4(a7ar) [ELBO- (a])]
« Whenw(t) = 1: just ELBO(a,)

* Then, remaining is very trivial...

FFPD(HJ - EKP(ECFM,(jLJId(at: l'jf;) - ﬁCFI\"].ﬂ(Qf: Ofl))?

1 Nme

N Zfﬂ(’r@afz‘)

1
Co(Ti, &) = ||Dg(a)*, Tis00) — (ar — €)|[3
a:"' = Qi Oy + Or;€iy

Lepmo(ag; o) =



2. Likelihood/ ELBO & Diffusion loss (e.g.2s)

* Example 2: imitation learning

Diffusion Imitation from Observation

Bo-Ruei Huang Chun-Kai Yang Chun-Mao Lai

(NeurlPS’24)

Dai-Jie Wu Shao-Hua Sun

Department of Electrical Engineering, National Taiwan University

4.1 Modeling expert transitions via diffusion model

Motivated by the recent success in using diffusion models for generative modeling, we use a condi-
tional diffusion model to model expert state transitions. Specifically, given a state transition (s,s’),
the diffusion model conditions on the current state s and generates the next state s’. We adopt
DDPM [27] and define the reverse process as py(s’;—1|s’s,s), where ¢t € T and ¢ is the diffusion
model, which is trained by minimizing the denoising MSE loss:

La(s,8) = Evurennion [lle = es(s's,1s)[°] . (1)

4.2 Diffusion model as a discriminator

The previous section describes how we can use the denoising loss as a reward for policy learning
via reinforcement learning. However, the policy can learn to exploit a frozen diffusion model by
discovering states that lead to a low denoising loss while being drastically different from expert states.
To mitigate this issue, we incorporate principles from the AIL framework by training the diffusion
model to recognize both the transitions from the expert and agent. To this end, we additionally
condition the model on a binary label ¢ € {cg, ¢4}, where ¢ represents the expert label and ¢4
represents the agent label, both implemented as one-hot encoding, resulting in the following denoising
losses given a state transition (s, s’):

: 2
Lh(s.s") = Eir.enr0,1) {”‘5 — €4(8"1. 1|3, cp)|| ] ; (2)

2
L (s,8') = EiTe~n(0,1) {”G — €5(8"1,t]s, c4)| } . (3)



2. Likelihood/ ELBO & Diffusion loss (e.g.2)

Definition 1 (Diffusion Score Divergence). For two distributions P and (), we define the Diffusion
Score Divergence (DS Divergence) as

DIFFUSING STATES AND MATCHING SCORES: Dps(P,Q) := E. EE(T) ( »
LA g Sp~qelc | 8
A NEW FRAMEWORK FOR IMITATION LEARNING

‘V log P;(s¢) — Vog Q4 ‘H)H

Runzhe Wu Yiding Chen Gokul Swamy . Algorithm 1 SMILING (Score-Matching Imitation LearnING)
Cornell University Cornell University Carnegie Mellon University
rw646@cornell.edu yc2773@cornell. edu gswamy@andrew.cmu.edu Require: state-only expert demonstration D° = {sm N

1: Estimate score function of expert state distribution:
Kianté Brantley Wen Sun . ) 9
Harvard University Cornell University g+ argmin ]EI‘) E [Hff st.t) — Vi, log gi(se |‘3)”g]
kdbrantley@g.harvard.edu ws455@cornell . edu geg  s~PTi~U(T) ‘”Nq‘{ %)

I

cfork=1.2, ..., K do

(lC LR’25) 3: Estimate the score function of learner state distributions:
k—1
) . 2
g’ + argmin E E [ 9(se,t) — Vs, logqi(s: | s) ] .
ge@ IZ =@ t~U(T) ‘!’1"‘-‘?:( | s ” ( ] [: | ||2
4:  Update policy 7(*) via RL (e.g., SAC) on cost ¢'*) (Eq. 3): 7¥) « RL(c®))

end for

Ln




3. Prior help for DM

* Which is easier?

%
e

.. ﬁi;:,;;:,,{é /
B R
e e R ;




3. Prior help for DM




3. Prior help for DM

* Good prior should help DM training a lot

» Also, transformation problem: e.g. left face = right face

 Simply incorporating prior is “easy”’.

* Current framework: encode prior in network (e.g. score/ velocity) fitting
* Use score-network as example (others need more derivations).

* Classifier guidance (~ outdated):
* py(xly) < p(x)p(ylx)¥

* 2 Vylogy p(x|y) = Vylogp(x) +yVylogp(y|x)
* Nasty classifier: noise-robust? Is x really informative y?



3. Prior help for DM

* Classifier-free guidance (mainly use):
* Use Bayes rule on p(y|x) again
* > Vylog, p(x|y) = (1 —y)Vylogp(x) + ¥V, logp(x|y)
e ycan>1
» “Classifier” trained by DM - easy
* In practice: single training + conditioning dropout (y = ¢)
* Similar results can be shown in FM:
c v(x|y) =1 —p)v(x) + vy - v(x|y) (CFG-Zerox: 2025 arXiv)



4. Sampling/ generation

* Speed up in 2 ways:
* Skip some steps, e.g., DDIM/ Taylor expansion
* Parallel (should be trivial implementation of Scott’s method)

* Noise schedule design: previous
* Diversity issue: community main focus
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